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Numerical solution of the �ow of thin viscous sheets under
gravity and the inverse windscreen sagging problem
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SUMMARY

The slumping of a thin sheet of very viscous liquid glass is used in the manufacture of windscreens
in the automotive industry. The governing equations for an asymptotically thin sheet with variable
viscosity are derived in which the vertical coordinate forms the centre-line of the sheet. The time-
dependant equations have been solved numerically using the backward Euler method to give results
in both two and three dimensions. The �ow of an initially �at sheet falls freely under gravity until it
becomes curved and the �ow becomes very slow in the ‘slumped’ phase. Finally the sheet freefalls as
the thickness becomes small at the boundaries. The inverse problem in which the viscosity pro:le is to
be determined for a given shape can be solved as an embedding problem in which a search is made
amongst the forward solutions. Possible shapes in the two-dimensional problem are very restrictive and
are shown to be related to the sheet thickness. In three dimensions the range of shapes is much greater.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There are many industrial processes involving the �ow of viscous �uids such as :bres or
thin sheets, and the solution of the Navier–Stokes equations characterised by free boundary
conditions having large aspect ratios has attracted much interest both mathematically and
numerically. For example, nearly one-dimensional viscous dominated :bres have been studied
by Schultz and Davis [1] and Dewynne et al. [2–4]. In the same spirit thin sheets have
been studied in which the governing equations have been derived as an asymptotic expansion
via a parameter related to the sheet thickness. For example, thin sheets in two dimensions
have been studied by Buckmaster et al. [5] and Wilmott [6] and a full non-linear model for
the evolution of a three-dimensional sheet has been derived by Howell [7; 8] and applied to
the blowing of a glass sheet [9]. Numerical solutions have been obtained using CFD codes
[10; 11], for example Tuck et al. [12] uses :nite elements to study the slumping of a liquid
bridge under gravity.
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The problem of interest here is the so-called windscreen sagging problem. A two-dimensional
thin sheet of molten glass of high viscosity is allowed to slump under the action of gravity.
The coeKcient of viscosity is variable depending on the temperature which is controlled by
an array of lamps above the sheet. By suitably choosing the variation of temperature and
hence viscosity the :nal shape of the sheet can be controlled. The process can be used in the
manufacture of windscreens for the automobile industry.
The variation of a typical windscreen from a suitable reference plane is 5–20 per cent and

it would appear possible to obtain a solution assuming that the vertical displacement referred
to as the ‘drop’ is small (for example Howell [7]). However, a small drop analysis also
assumes that the gradients are small but at the ends of the windscreen the gradient can be
quite large. For this reason we will develop a model that allows for a drop of any magnitude.
The governing equations developed in References [7–9] use a curvilinear coordinate system
:xed in sheet using the normal and the tangential directions of the principle curvatures. These
equations are diKcult to solve numerically particularly at points where the principle curvatures
are equal. For this reason we will derive the governing equations in a coordinate system more
suitable for this particular problem. We use Cartesian coordinates x and y in a horizontal
plane with vertical coordinate measured from the centre-line z=H (x; y; t) de:ned such that
the boundaries of the sheet are H (x; y; t)±(1=2)h(x; y; t). This can be eMected by performing
Taylor expansions in the z-direction about the centre-line to all variables. The governing
equations are then derived from the leading terms when applied to continuity and Navier–
Stokes equations in which use of the kinematic and stress-free boundary conditions has been
made.
For molten glass the viscosity 	 varies considerably with temperature lying within a range

102–108 N sm−2. A typical windscreen has dimensions 0:6× 1:5m and we may set the length
scale L=1. With density �∼ 2:5× 103 kg m−3 and acceleration due to gravity g∼ 9:8 m s−2

a typical slump velocity V= gL2�=	 lies in the range 2:5× 10−6–2:5× 102 with slump times
L=V ranging from milliseconds to days, with hours being typical. The Reynolds number
Re=�VL=	= g�2L3=	2 lies in the range 6× 10−9–6× 103 and hence we retain the inertia terms
in the equation to accommodate the upper end of the range but for the most part this is not nec-
essary. We have neglected surface tension since the capillary number Ca=	V=�= gL2�=�∼ 105

is large compared to unity where �=0:3 N m−1 is the coeKcient of surface tension.

2. GOVERNING EQUATIONS

As in the introduction we suppose a thin sheet of �uid (Figure 1) has centre-line

z=H (x; y; t)

with vertical thickness h(x; y; t) such that the boundaries of the sheet are

z=H± 1
2h (1)

Since the boundaries move with the �uid, a point (x(t); y(t); z(t)) lying in the surface will
remain in the surface and satisfy Equation (1) at all times. Hence diMerentiating Equation (1)
yields the kinematic boundary condition

Ht± 1
2ht + u · n=0 on z=H± 1

2h (2)
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THE INVERSE WINDSCREEN SAGGING PROBLEM 535

Figure 1. Geometry of the thin sheet with centre-line z=H (x; y; t)
(dotted) with boundaries z=H (x; y; t)±(1=2)h(x; y; t) (solid).

where u=(u; v; w) is the �uid velocity, whose components will also be labelled ui; i=1; 2; 3
and n is the normal to a surface given by

n= n0 ± 1
2n1

where n0 = (Hx;Hy;−1) and n1=(hx; hy; 0) We will suppose that any dependent variable �(x; y;
z; t) can be written as a Taylor expansion in power of (z −H) as

�=�0 + (z −H)�1 +
1
2!
(z −H)2�2 +O(z −H)3

where �i depends only on (x; y; t). Regarding n1 as the next order smallness to n0 gives the
leading two terms in Equation (2) as

Ht + u0 · n0 = 0 (3)
ht + u0 · n1 + hu1 · n0 = 0 (4)

The �uid �ow is governed by the continuity and Navier–Stokes equations. The two leading
terms of the continuity equation, ∇ · u=0, give

∇ · u0 = u1 · n0 (5)

∇ · u1 = u2 · n0 (6)

where ∇=(@=@x; @=@y; @=@z)T=(@=@x; @=@y; 0)T since the operator will only be applied to vari-
ables which are independent of z. Combining Equations (4) and (5) gives

ht +∇ · (hu0)=0 (7)

which is a conservation of mass statement regarding the sheet width h.
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The Navier–Stokes equations can be written as

@u
@t

+ (u · ∇)u=
1
�
∇ · � − g (8)

where � is the stress tensor whose components are

�ij =−p�ij + 	(ui; j + uj; i)

where g=(0; 0; g) and p is the pressure. The leading term of the expansion gives

@u0
@t

+ (u0 · ∇)u0 +
1
�
(∇p0 − p1n0)=  D2u0 + e0 · ∇ − (n0 · ∇ )u1 − (u1 · ∇ )n0 − g (9)

where use has been made of Equation (5) and

D2�0 =�0; xx + �0;yy − (Hxx +Hyy)�1 − 2(Hx�1; x +Hy�1; y) + (1 +H 2
x +H 2

y )�2

for any function �0 and eq is a tensor related to the rate of strain tensor de:ned by

(eq)ij =(uq)i; j + (uq)j; i q=0; 1

It should be noted that the kinematic viscosity  =	=� can depend on (x; y; t) but not on z;
this will be used for the inverse problem.
The stress-free boundary condition � · n=0 is applied to both boundaries. The leading two

terms of the expansion are

�0 · n0 = 0 (10)
�0 · n1 + h�1 · n0 = 0 (11)

where the various terms can be evaluated using

�q · n r =−pqn r + 	[eq · n r − (uq+1 · n r)n0 − (n0 · n r)uq+1] q=0; 1 r=0; 1− q

Equations (3)–(6) and (9)–(11) form a set of 13 equations for the unknowns u0; u1, u2,
p0, p1, H and h and are the minimum required to obtain a leading order solution. Variables
u1 and p0 appear in Equations (5) and (10) linearly and undiMerentiated. Hence we can :nd
expressions for these variables using matrix inversion. Substituting the formulae for these into
Equations (6) and (11) we similarly observe that the variables u2 and p1 appear linearly and
undiMerentiated and can be found by matrix inversion. The expressions for these variables were
found using Maple [13] are not presented here due to their inordinate length. Substitution of
these four variables into the remaining Equations (3), (4) and (9) form a set of time dependent
equations of the form

@U
@t

=F(U) (12)

where U=(u0; H; h) which needs to be solved numerically. These equations govern the solution
in the limit as h→ 0 and hence the value of h is evaluated relative to some nominal thickness,
for example, its value initially. In all our calculations we suppose h is given at t=0.
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3. NUMERICAL SOLUTION IN TWO DIMENSIONS

In this section we will suppose that we have no y dependence. The governing equations can
be obtained from Section 2 by setting the velocity v=0 and @=@y=0. For convenience the
vertical direction is relabelled as y and the vertical velocity as v. We consider the problem
in which the sheet is :xed at two points x=±L, y=0 and is initially �at with constant
thickness. The equations are non-dimensionalised using L as the unit of length, U =

√
gL as

the unit of velocity and �U 2 as the unit of stress which give equations similar to the original
equations with g=L=�=1. The time-dependent Equations (3), (4) and (9) are

u0; t=−u0u0; x − p̃0; x +  D2u0 + 2ũ0; x x

u0; t=−u0v0; x − p1 +  D2v0 + (u0; y + ṽ0; x) x − 1

Ht=v0 − u0Hx

Gt=−u0; x − u0Gx

(13)

where

�̃i; x =�i; x −Hx�i+1

D2�0 =�0; xx −Hxx�1 − 2Hx�1; x + (1 +H 2
x )�2

for any variable � and i=0; 1 and 1= acts as a Reynolds number. Here we have introduced
G= ln h which ensures that h always remains positive in the numerical calculation. These
four equations govern the evolution of U=(u0; v0; H;G) and the other variables are found
algebraically as previously indicated. Speci:cally the resulting formulae are

p0 =−2 A0J; u1=B0J 2; v1=C0J 2 (14)
p1 =−2 A1J; u2 = (B1 + 4GxA0J )J 2; v2 = (C1 + 4GxHxA0J )J 2 (15)

where

Ai = ui; x +Hxvi; x; i=0; 1

Bi =Hx(H 2
x + 3)ui; x + (H 2

x − 1)vi; x; i=0; 1

Ci = (H 2
x − 1)(ui; x +Hxvi; x); i=0; 1

J= (1 +H 2
x )

−1

Equations (13), (14) and (15) completely specify the problem which is solved numerically
as follows.
The problem is symmetric about x=0 and hence we seek a solution on the domain 06x61.

An equally spaced grid, xi = iSx; i=0; 1; : : : ; N , is placed on the domain where Sx=1=N is
the mesh width and Un

i is an approximation for U at xi for time level n. Since Equations (14)
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and (15) only involve :rst derivatives it is convenient to locate p0, u1 and v1 at the staggered
(1=2)-integer locations and to approximate the derivatives, for any �, by

�;x|i+1=2 =
�i+1 − �i

Sx
; and �;x|i = �i+1=2 − �i−1=2

Sx
(16)

where the :rst of these is used in Equation (14) and the second in Equation (15). Hence if
Un

i ; i=0; 1; : : : ; N is known at any stage of the calculation then p0; u1; v1; p1; u2 and v2
can be found at all the grid points for this time level using Equations (14), (15) and (16).
The derivatives on the right side of Equation (13) are approximated using standard second
order central diMerences given by

�;x|i = �i+1 − �i−1

2Sx
; and �;xx|i; j = �i+1 − 2�i + �i−1

Sx2

the exception being p0; x for which we use the second of Equation (16). Occasionally the
value of a variable is required at an integer location which is held at a (1=2)-integer point.
For this we use a simple average

�i =
1
2
(�1+1=2 + �i−1=2) (17)

Equation (13) is of the form of Equation (12) where the right hand side is now algebraic.
The time derivatives are approximated by :rst order backward diMerences and the numerical
method for Equation (12) is

Un+1
i =Un

i +StFn+1
i (18)

where and St is the time-step. Hence the time advance employs the backward Euler method
which has very good stability characteristics. At the left hand boundary, i=0, the solution
is symmetric and we introduce a :ctitious node at i=−1 and apply the appropriate sym-
metric boundary conditions. At the right hand boundary, i=N , the sheet is :xed giving
u0 = v0 =H =0 and G is updated using the fourth of Equation (13) with one-sided diMer-
ences to approximate the x-derivatives. Equation (18) and these boundary conditions form a
set of non-linear equations at each time level which is solved using Newton’s method.
As will become evident in the next section, there are periods of very rapid movement at

the beginning and end of the �ow, with a period, in between, of very slow, ‘slumped’ �ow.
In order to accommodate this, a variable time-step is used such that the local error estimate
T is always less than some prescibed tolerance + throughout the calculation. Speci:cally at
each time-step we calculate

Un+1
i =Un

i +StFn+1
i

Vn+1=2
i =Vn

i + 1
2StFn+1=2

i

Vn+1
i =Vn

i+1=2 +
1
2StFn+1

i

Ṽn+1
i =Vn

i +StFn+1
i

Since the backward Euler method is :rst order, we use T=maxi |Ṽn+1
i −Vn+1

i | to estimate the
local error, which is used to control the value of St in the usual way. For the case  =100,
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Figure 2. RMS error estimates E in the ‘slumped’ �ow as a function
of the tolerance + for various values of  .

the value of St ranges from 0.01 in the rapid regions to 10 in the ‘slumped’ region. After
each time-step Vn+1

i is the required result, being more accurate than Un+1
i . Again noting that

the method is :rst order the RMS error in Vn+1
i at each time level is given by

E=
1
4N

∑
i
|Vn+1

i −Un+1
i |

Figure 2 shows the maximum value of E in the ‘slumped’ region as a function of the tolerance
+ when N=128 for three values of  . The diagram clearly shows that the results converge as
+ → 0, and that a tolerance of 10−4 is suKcient to give results having error of about 10−3.
In order to estimate the error incurred in the x-direction, results with N=32, 64, 128 and 256
having the same St at each time-step were compared. It was evident that setting N=128 is
adequate for a tolerance of 10−3.

4. RESULTS FOR THE TWO-DIMENSIONAL PROBLEM

Using the numerical procedure, results have been obtained for constant viscosity with  =10-,
-=−2;−1; : : : ; 6 which covers the range for molten glass. These are illustrated in Figures 3–10
for  =100 and show that the �ow passes through three distinct phases. In the :rst phase the
horizontal �at pro:le falls under gravity with the �at sections being unaMected by the viscosity.
The contours of H are shown in Figure 3 for t=0:0(0:05)0:4 in which the �at section is
gradually eroded and disappears at about t=0:4. The corresponding vertical velocities v0 are
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Figure 3. Pro:les of H for t=0(0:05)0:4.

Figure 4. Pro:les of v0 for t=0(0:05)0:4.

shown in Figure 4 with the central velocity increasing linearly. After t=0:4 the magnitude
of v0 gradually decreases (Figure 5) passing through a period of ‘sloshing’ oscillations until
it settles down to a velocity with a shallow parabolic like pro:le by about t=40. The weak
damping in these osciallations is shown in Figure 6 which shows the central velocity v0(0; t) as
a function of t. For t¿40 the �ow has now entered the second phase which is the ‘slumped’
�ow. Here viscous forces dominate and the sheet gradually falls with a minimum central
vertical velocity ∼−0:005 at about t=90. Figure 7 shows the normal thickness h=

√
1 +H ′2

as a fraction of the initial thickness. Initially this thickness is unchanged, as has been shown
analytically in the shallow solution case [7], but as time passes the thickness decreases which
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Figure 5. Pro:les of v0 for t=5(5)100.

Figure 6. Variation of v0(0; t) with time t.

is a consequence of mass being conserved. This occurs principly at the edges with the result
that the ‘slump’ velocity gradually increases (Figure 8). At about t=300 the thickness at the
edges is so small that bulk of the sheet starts to fall under gravity. The �ow now enters the
third phase in which the sheet is virtually disconnected from its supports. Now the �ow is
again freefalling with the thickness of the edge → 0 as t→ 355:4. Figure 9 shows the variation
of H over the whole time span clearly showing the rapid drops in the :rst and third phases
and the ‘slumping’ �ow of the second phase. The horizontal velocity u0 is substantially less
than v0 by at least an order of magnitude with some pro:les shown in Figure 10.
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Figure 7. Pro:les of h for t=0(20)340.

Figure 8. Pro:les of v0 for t=100(10)330.

The above description is typical for  ¿10, however for  =1 the ‘slumping’ phase is very
short and non-existant for  ¡1. This is can be seen in Figure 11 which shows the central
drop as a function of the time t for each value of -. The parabola shows the freefall path
of the initial phase from which the curves break away when entering the ‘slumping’ phase.
For large  the times involved are large and it is more convenient to scale time with 1=0.
Figure 12 shows the drop H plotted against t= . The curves for  ¿100 virtually coincide and
are indistinguishable in the diagram with  =10 very close to these. The slow drop of the
‘slumping’ phase is clearly shown followed by the rapid descent of the :nal free-fall.
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Figure 9. Pro:les of H for t=0(20)340.

Figure 10. Pro:les of u0 for t=80(20)320.

5. NUMERICAL SOLUTION IN THREE DIMENSIONS

We consider the case where the sheet is :xed on the boundaries of a rectangle x=±M , y=±L
at z=0. The problem is non-dimensionalised as previously with L as the unit of length and
then the boundary will be x=±a, y=±1 where a=M=L is the aspect ratio and we may
assume a¿1 without loss of generality. Formulae for p0, p1, u1 and u2 were calculated using
Maple similar to Equations (14) and (15) and converted directing into Fortran which ensures
they are error free. The variables p0 and u1 are held at the (1=2)-integer points which are the
cell centres of a grid placed on the rectangle with mesh spacing Sx= a=Nx and Sy=1=Ny

where Nx ×Ny is the size of the grid. The discretisations for the derivatives are similar to
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Figure 11. Plot of H (0) as a function of t for  =10-, -=−2;−1; : : : ; 6.

Figure 12. Plot of H (0) as a function of t= for  =10-, -=−2;−1; : : : ; 6.

those of the previous section. Some derivatives involve averaging, for example, the derivatives
at cell centres, corresponding to Equation (16) become

�;x|i+1=2; j+1=2 =
�i+1; j+1 + �i+1; j − �i; j+1 − �i; j

2Sx

�;x|i; j = �i+1=2; j+1=2 + �i+1=2; j−1=2 − �i−1=2; j+1=2 − �i−1=2; j−1=2

2Sx
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Figure 13. Pro:les of v0 for (a) t=0(0:05)0:4 (b) t=10(10)100 and (c) t=100(20)420.

with similar expressions for the y derivatives, and the averaging of Equation (17) involves
the four nearest neighbours

�i; j = 1
4(�1+1=2; j+1=2 + �i+1=2; j−1=2 + �i−1=2; j+1=2 + �i−1=2; j−1=2)

The time advance of the vector U=(u0; H;G) uses exactly the same technique as outlined in
Section 3.
Results for the three-dimensional �ow have very similar characteristics to those observed

in the two-dimensional case and will be illustrated for  =100 only. The results for an aspect
ratio a=2 and using a 32× 64 grid are depicted in Figures 13 and 14 which show the
centre-line pro:les of the :ve variables, the left hand graph in the plane x=0 and the right-
hand graph in y=0. As in the two-dimensional case the �ow passes through the same three
phases. Figure 13(a) shows the pro:les of vertical velocity w0 for times up to t=0:4 of the
:rst phase in which the sheet falls under gravity until it is arrested by viscous stresses as
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Figure 14. Pro:les for t=0(20)420 of (a) h (b) H and (c) u0.

the sheet becomes curved, the central velocity reaching a maximum magnitude of 0:343 at
t=0:37. After this the central velocity magnitude decreases as shown in Figure 13(b) and
we enter the ‘slump’ phase reaching a minimum value of 0:0047 at about t=100. The �ow
remains in the slumped phase until the sheet thickness becomes thin at the edges as shown
in Figure 14(a) occuring :rst in the longer of the two sides. The �ow then enters the :nal
phase with the bulk of the sheet falling under gravity with vertical velocity pro:les as shown
in Figure 13(c). The pro:les of the centre-line H of the sheet are shown in Figure 14(b) for
equally spaced times showing rapid movement for early and late times and a slower movement
during intermediate times. Finally Figure 14(c) shows the centre-line velocity pro:les for u0 in
the right-hand graph and v0 on the left. A comparison of Figures 13 and 14 with Figures 3–10
shows that the two- and three-dimensional �ows are characteristically very similar. Figure 15
shows pro:les of H for various aspect ratios a. As a increases the time taken to reach a given
depth decreases since the boundaries at x=±a have diminishing eMect on the �ow. This is
shown clearly in the insert which plots H at the centre point (0,0) as a function of t.
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Figure 15. Pro:les for H for t=0; 20; 40; : : : with aspect ratio (a) 1 (b) 2 and (c) 4.
The insert shows the position of the centre point against t.

6. THE INVERSE PROBLEM

So far we have considered the case in which the viscosity pro:le, usually constant, is speci:ed
and the resultant shape of the sheet, given by H (x; y; t) is obtained for various times t. The
industrial problem of interest is the reverse of this, namely, given a centre-line pro:le, TH (x; y),
what is the viscosity pro:le  (x; y) which will produce this drop after some time T , where T
is suKciently large to ensure we are in the slumped phase.
The method consists of searching amongst the forward solutions until a viscosity pro:le

 (x; y) is found which gives the required solution TH (x; y) to within a prescribed tolerance.
For simplicity we will describe the technique for the two-dimensional case, the extension
to three dimensions is straightforward. Thus we will search amongst the various  (x) until
‖H (x; T )− TH (x)‖¡+ where + is a prescribed tolerance. The number of forward solutions that
are required is quite prohibitive and to keep the problem manageable we will approximate  (x)
and TH (x) by orthonormal even polynomials pi and qi of degree 2i; i=0; 1; 2; : : : de:ned as

∫ 1

0
pi(x)pj(x) dx= �ij

∫ 1

0
(1− x2)qi(x)qj(x) dx= �ij (19)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:533–553



548 R. HUNT

then

 (x)�
m∑
i=0

aipi(x) TH (x)� (1− x2)
m∑
i=0

biqi(x) (20)

where

ai =
∫ 1

0
 (x)pi(x) dx bi =

∫ 1

0

TH (x)qi(x) dx (21)

for the coeKcients ai and bi. The integrals in Equation (21) are performed numerically using
the grid values with the trapezoidal rule. If the polynomials pi and qi in Equation (19) are
de:ned using the trapezoidal rule with the same grid points rather than analytically, then the
errors in  (x) and TH (x) in Equation (20) decrease spectrally. The multiplicative factor outside
the summation in the second of Equation (20) and the weight in the second of Equation (19)
take advantage of the boundary condition that H and TH are zero on the boundary, which
makes for a more accurate approximation for given m. For given ai we can calculate  (x)
using the :rst of Equation (20) and then numerically calculate H (x; T ) which can be expressed
in the form of the second of Equation (20) with coeKcients ci where

ci =
∫ 1

0
H (x; T )qi(x) dx

Hence the inverse problem consists of choosing the ai such that ci = bi for i=0; 1; : : : ; m,
which is accomplished using Newton’s method as follows. We can regard the ci as functions
of ai and are required to solve

c0(a0; a1; : : : ; am)=b0
c1(a0; a1; : : : ; am)=b1

...
cm(a0; a1; : : : ; am)=bm

that is

c(aT )= b (22)

where a; b and c are the vectors of the coeKcients having length (m + 1). Then Newton’s
method is

a(s+1)=a(s) + Sa(s)

JSa(s)=b− c(s) s=0; 1; 2; : : :

where c(s) are the coeKcients obtained when a= a(s) and J is the Jacobian matrix whose
(i; j)th element is @ci=@aj. The elements of J need to be calculated numerically and we use
the formula

@ci
@aj

� 1
+
[ci(a

(s)
0 ; : : : ; a(s)j + +; : : : ; a(s)m )− ci(a

(s)
0 ; : : : ; a(s)j ; : : : ; a(s)m )] (23)

where + is small but not too small (10−3 was used in the calculations). Hence in addition to
calculating the solution for a(s) we need a further (m + 1) calculations to :nd the solution
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Figure 16. Pro:les of (a) TH and (b)  for the limiting values of B when A=0:5.

for (a(s)0 ; : : : ; a(s)j + +; : : : ; a(s)m ); j=0; 1; : : : ; m which can be costly. However, the value of m
is quite small since we only require the approximations in Equation (20) to lie within the
tolerance + and setting +=10−3 it was found that m=6 is usually suKcent. In the slump
phase the required viscosity  (x) is proportional to T and hence we may use any large value
for T and, in practice, we set T=1000.
To illustrate the technique we have chosen

TH (x)=−A(1− x2)(1 + Bx2) (24)

with A=0:5 and A=1 for a range of values of B. For A=0:5 results were obtained for B in
the range 0:0436B60:152 and for values of B outside this range no numerical solution could
be obtained and it is likely that in this case no solution exists. Pro:les for TH (x) and  (x)
at the limits of this range are shown in Figure 16. The possible pro:les for TH (x) are very
restrictive and are very close to the shape produced by a constant viscosity. The corresponding
two viscosity pro:les are very diMerent in both shape and magnitude and show that a small
change in TH (x) produces a large change in  (x). The situation for A=1 is slightly more
promising with a range of 0:0006B60:880 for B and the pro:les for the limiting values are
shown in Figure 17.
To see why the possible pro:les are so restrictive we can make some progress analytically.

In the slump region the inertial terms can be neglected and Equation (8) becomes the non-
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Figure 17. Pro:les of (a) TH and (b)  for the limiting values of B when A=1.

dimensional Stokes equation ∇ · �= ey which in component form is

@
@x

�xx +
@
@y

�xy =0

@
@x

�xy +
@
@y

�yy =1

which give the leading term in the expansion as

@
@x

�0xx −Hx �1xx + �1xy =0

@
@x

�0xy −Hx �1xy + �1yy =1

Using the free stress boundary conditions of Equations (10) and (11) these reduce to

1
h

@
@x

(h�0xx)=0
1
h

@
@x

(hHx �0xx)=1
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From the :rst of these we observe that h�0xx depends on t alone. Setting h�0xx =1=f(t) for
some function f, the second equation yields

Hxx = hf(t) (25)

Thus the shape of the centre-line pro:le depends only on h. The continuity Equation (7)

@h
@t

+
@
@x

(hu0)=0

governs the variation in h which depends on u0. In the slump phase the velocity is principally
vertical with v0�u0 and hence the variation in h is slight. When h is a constant the shape of
the centre-line pro:le is necessarily parabolic and since H=0 at x=± 1 we have

H=− 1
2 (1− x2)hgf(t)

with shape R=1 − x2. Obtaining pro:les signi:cantly diMerent from this is at best diKcult
and at worst impossible since no solution will exist.
For the three-dimensional problem, however, the above analysis does not give the simple

solution that the shape of H depends solely on h since there is no equivalent solution similar
to Equation (25). Because of this the range of solutions of the inverse problem in three
dimensions is much less restrictive. As described earlier we suppose that the :xed boundaries
of the sheet are x=± a and y=± 1 with symmetry about x=0 and y=0. The polynomials
pi and qi are as de:ned in Equation (21) previously and we express  (x; y) and TH (x; y) by

 (x; y)�
k∑

i=0

i∑
j=0

aijpi(x=a)pj(y)

TH (x; y)�(a2 − x2)(1− y2)
k∑

i=0

i∑
j=0

bijqi(x=a)qj(y)
(26)

where

aij=
1
a

∫ a

0

∫ 1

0
 (x; y)pi(x=a)pj(j) dx dy

bij=
1
a3

∫ a

0

∫ 1

0

TH (x; y)qi(x=a)qj(y) dx dy

(27)

for i=0; 1; : : : ; k; j=0; 1; : : : ; i, that is for all non-negative i and j satisfying i + j6k.
As in the two-dimensional case, for given aij we can calculate  (x; y) using the :rst of

Equation (26) and then numerically calculate H (x; y; T ) from which we :nd the cij using

cij =
1
a3

∫ a

0

∫ 1

0
H (x; y; T )qi(x=a)qj(y) dx dy

Hence, as before, the inverse problem consists of choosing the aij such that cij = bij for all i
and j and can be written as Equation (22) with m=(1=2)k(k + 3).
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Figure 18. Contour plot of  which gives a drop TH as given by Equation (28). The center-line pro:les
of TH are shown above and to the right.  has a maximum of 2:664× 104 (indicated by the ‘High’) and
a minimum of 2:783× 102 (indicated by the ‘Low’) with contour heights increasing by a factor 1.2563.

We illustrate with

TH (x; y)=−A(a2 − x2)(1− y2)(1 + Bx2 + Cy2 +Dx2y2) (28)

with aspect ratio a=3 and A=1=18, B=4, C=0:1 and D=BC. This has centre-line pro:les
as shown in Figure 18 and is clearly diMerent from the constant viscosity results described
earlier. Results for the viscosity  (x; y) were obtained with m=20 (using k=5) and is shown
as a contour map in Figure 18.

7. CONCLUSION

The governing equations for the time dependant motion of a thin sheet under the in�uence of
gravity have been derived and solved numerically for both constant and variable viscosity in
two and three dimensions. The solution for the sheet that has reasonably large viscosity and
is initially �at show that the evolution passes through three distinct phases. Firstly the sheet
drops under gravity with negligilbe viscous forces away from the boundaries. Secondly, as the
sheet becomes curved, viscous forces dominate and the sheet ‘slumps’ with small velocities.
Finally at the boundaries the sheet becomes so thin that it is no longer supportable by the
edges and free falls.
The inclusion of variable viscosity allows the solution of the inverse problem, that is, to

calculate the viscosity pro:le that produces a prescribed drop. In two dimensions we found it
was not possible to obtain solutions for problems whose centre-line pro:les are signi:cantly
diMerent from those produced by a constant viscosity. Analysis of the governing equations
reveals that the shape of the centre-line pro:le is governed by the sheet thickness whose
variation is often only slight. In three dimensions the situation is more promising and has
been illustrated with a single example.
For the production of car windscreens the frame used as the boundary will not usually be

rectangular or lie in a plane. Further, the glass sheet is often dropped or thrown onto the
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frame and hence the inital condition will not be static. Both of these extensions form the
basis of possible future work.
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